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Abstract. We investigate the effect of a nondegenerate quadratic nonlinear dimeric impurity
on the formation of stationary localized states in one-dimensional systems. We also consider the
formation of stationary self-localized states in a translationally invariant fully nonlinear system
where alternative sites have the same nonlinear strengths. Appropriateansatzehave been chosen
for all of the cases which reproduce the known results for special cases. The connection of the
stability of a state to its energy is presented graphically.

1. Introduction

The discrete nonlinear Schrödinger equation (DNLSE) which describes a number of phenom-
ena in condensed matter physics, nonlinear optics and other fields of physics [1–6] for
one-dimensional systems is generally written as

i
dCm
dt
= −χmfm(|Cm|)Cm + Vm,m+1Cm+1+ Vm,m−1Cm−1

where Vm,m+1 = V ?m+1,m and m = 1, 2, 3, . . . , n. (1)

In equation (1),χm is the nonlinearity parameter associated with themth grid point and
Vm,m+1 is the nearest-neighbour hopping matrix element. Since,

∑
m |Cm|2 is made unity

by choosing appropriate initial conditions,|Cm|2 can be interpreted as the probability of
finding a particle at themth grid point. In the context of condensed matter physics, the
nonlinearity termfm(|Cm|) arises due to the coupling of the vibrations of masses at the
lattice points to the motion of a quasi-particle in the high-frequency lattice vibration limit
[3]. The DNLSE is known in another physical context as the discrete self-trapping (DST)
equation. A number of studies of the DNLSE and DST have been reported [7–10].

As regards the application of the DNLSE specifically in condensed matter physics, we
mention as an example its use in the study of exciton propagation in the Holstein molecular
crystal chain [2]. In general, the exciton propagation in quasi-one-dimensional systems [11]
having short-range electron–phonon interaction can be adequately modelled by the DNLSE.
Other examples include its use in the study of nonlinear optical responses in superlattices
formed by dielectric or magnetic slabs [12] and the mean-field theory of a periodic array
of twinning planes in the high-Tc superconductors [13]. We also note that the vibration in
the nonlinear Klein–Gordon chain can be described by the DNLSE under certain restrictive
conditions [14].
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One important feature of the DNLSE is that it can yield stationary localized (SL) states.
These SL states might play a significant role in the nonlinear DNA dynamics [15] and also
in the energy localization in nonlinear lattices [16]. It has been shown that the presence of
a nonlinear impurity can produce SL states in one, two and three dimensions [17–24]. The
formation of SL states due to the presence of a single and a degenerate dimeric nonlinear
impurity in a few linear hosts has been studied in detail [20]. The same problem has
also been studied starting from an appropriate Hamiltonian [23]. The fixed point of the
Hamiltonian [21–24] which generates the appropriate DNLSE can also produce the correct
equations governing the formation of SL states. We further note that the appropriateansatz
for the dimer problem was obtained in our earlier analysis [20]. Furthermore, the formation
of intersite peaked and dipped stationary self-localized states has been studied using the
dimeric ansatz[24]. The formation of SL states in a perfect nonlinear chain containing
one nonlinear impurity as well as a degenerate nonlinear dimeric impurity has been studied
[24]. In another study the formation of SL states in a perfect nonlinear Cayley tree and in
a linear Cayley tree with dimeric impurity has been considered [24].

So far, only degenerate nonlinear dimer impurities have been considered. Naturally,
the question arises of what happens if the impurities in the dimer are nondegenerate. We
therefore plan to study the effect of nondegeneracy in impurities on the formation of SL
states. Three linear hosts are studied, namely a perfect one-dimensional chain, a Cayley
tree and a linear chain with a bond defect. We also consider the formation of SL states in a
fully nonlinear chain having a regular binary alloy composition. Appropriateansatzehave
been fitted in all of the cases to obtain the results.

The organization of the paper is as follows. In section 2 we consider the effect of a
nonlinear nondegenerate dimer on the formation of SL states in linear systems. Section 3
deals with the formation of SL states in a fully nonlinear system and the stability analysis of
the SL states. We summarize our findings in section 4. Finally there is an appendix in which
we demonstrate the transformation of the Cayley tree into an effective one-dimensional
system.

2. Nondegenerate nonlinear dimer impurities

We consider a one-dimensional chain system consisting of a nondegenerate nonlinear dimer
impurity of the kind χ |C|σ (a power-law impurity) whereσ is arbitrary. The dimeric
impurity is placed at sites 0 and 1 of the chain. The dimer is nondegenerate in the sense
that the nonlinear strengths at sites 0 and 1 are different; these are denoted byχ0 andχ1.
Furthermore, the system has a bond defect between sites 0 and 1. Therefore, the relevant
Hamiltonian for this system is

H =
∞∑

m=−∞
[CmC

?
m+1+ HC] + (V − 1)[C0C

?
1 + HC] + 2χ0

σ + 2
|C0|σ+2+ 2χ1

σ + 2
|C1|σ+2.

(2)

The hopping matrix element connecting sites 0 and 1 isV and the others are taken to be
unity. In the absence of nonlinear impurities, the Hamiltonian withV = 1 describes a
perfect chain and that withV < 1 corresponds to a perfect Cayley tree, as is shown in
the appendix, while that withV > 1 describes a one-dimensional chain with a bond defect
between sites 0 and 1. Over and above, each of the systems contains a nondegenerate
nonlinear dimeric impurity spanning the zeroth and first sites. Since we are interested in
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the possible solutions for SL states due to the presence of dimeric impurity, we assume that

Cm = φme−iEt . (3)

It is well known that the impurity states in one-dimensional systems are exponentially
localized. Therefore, the presence of a dimeric impurity in the system suggests that we
consider the following form ofφm:

φm = [sgn(E)η]m−1φ1 m > 1

φ−|m| = [sgn(E)η]|m|φ0 m 6 0.
(4)

We further note that the above form forφm can be derived from Green’s function analysis
[20]. Hereη ∈ [0, 1] is given by

η = 1

2
[|E| −

√
E2− 4].

We further defineβ = φ1/φ0 ∈ [−1, 1] if |φ1| 6 |φ0|. On the other hand, for|φ0| 6 |φ1|, we
can interchange the definitions ofβ without any loss of generality. Now the normalization
condition,

∑∞
m=−∞ |Cm|2 = 1, together with equations (3) and (4), gives

|φ0|2 = 1− η2

1+ β2
. (5)

Using equations (3), (4) and (5) in the HamiltonianH , we obtain the effective Hamil-
tonian of the reduced dynamical system:

Heff = 2 sgn(E)η + 2Vβ
1− η2

1+ β2
+ 2

σ + 2

(
1− η2

1+ β2

)(σ+2)/2

× (χ(1+ |β|σ+2)+ δ(1− |β|σ+2)). (6)

Here we have definedχ andδ asχ = (χ0 + χ1)/2 andδ = (χ0 − χ1)/2. For a particular
system,χ and δ are constants whileη and β are the variables.η and β, by definition,
determine the energy and the probability profile of the particle in the system respectively.
Therefore, these two unknown variables,β andη, need to be determined self-consistently.
For this reason we treatη and β as dynamical variables ofHeff . SL states then can be
obtained from the fixed-point solutions [21–23] of the Hamiltonian,Heff , of the reduced
dynamical system. The fixed-point solutions satisfy the equations∂Heff /∂β = 0 and
∂Heff /∂η = 0. In the language of the calculus of variations, we are finding extremal values
of β and η using the variational principle. Since the form of the probability profile is
rigorous [25], we obtain the correct values ofβ andη.

The equation∂Heff /∂β = 0 gives

[1− η]σ/2 = V (1− β2)(1+ β2)σ/2

β[(χ + δ)− |β|σ (χ − δ)] . (7)

The equation∂Heff /∂η = 0 gives

η = sgn(E)β[(χ + δ)− |β|σ (χ − δ)]
V [(χ + δ)− |β|σ+2(χ − δ)] . (8)

For fixed values ofχ and δ, the number of solutions satisfying equations (7) and (8)
simultaneously will give the number of possible SL states. This can be obtained for arbitrary
σ , but we will considerσ = 0 andσ = 2. The reason for selecting theσ = 0 case is
that the result is already known and hence the appropriateness of theansatzcan be verified.
σ = 2 is considered because it is physically more relevant.
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Figure 1. The phase diagram of SL states in the(χ, δ) plane for a one-dimensional system with
a nondegenerate linear dimeric impurity in the middle of the system. The(χ, δ) plane is divided
into many regions by the critical lines. The label 2LA indicates that two SL states are possible
in that region and that both of them lie above the band of the linear host. Similarly, labels 1LA,
1LB and 2LB indicate regions with one SL state above the band, one SL state below the band
and two SL states below the band, respectively.

2.1. σ=0

For σ = 0, the system reduces to a perfectly linear one-dimensional chain with two static
impurities χ0 and χ1 at the sites 0 and 1 respectively. In this case, equation (7) gives
directly

β± = − δ
V
±
√
δ2

V 2
+ 1. (9)

In passing, we note that, whenδ = 0, i.e. when the dimer impurity becomes linear and
degenerate,β = ±1 are the only permissible solutions. This is consistent with our earlier
work [20]. On the other hand, forδ 6= 0 only values ofβ 6= ±1 are permissible solutions.
Substituting equation (9) in equation (8) we obtain

1

χ
= η

sgn(E)∓ η√δ2+ V 2
. (10)

Equation (10), along with signature ofE, gives four expressions for 1/χ . From each
expression we will get a critical line in the(χ, δ) plane. The critical lines can be obtained
by puttingη = 1 in equation (10). The equations describing the critical lines are

χ(1)c = −χ(2)c = 1+
√
δ2+ V 2

χ(3)c = −χ(4)c = 1−
√
δ2+ V 2.

(11)

These critical lines are shown in figure 1 forV = 1, in figure 2 forV = 0.5 (which
corresponds to a Cayley tree withK = 4) and in figure 3 forV = √2. There are several
regions in the(χ, δ) plane bounded by the critical lines in all of the figures. There are
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Figure 2. The phase diagram of SL states in the(χ, δ) plane for a Cayley tree with a
nondegenerate linear dimeric impurity embedded in the middle of the system. The connectivity
(K) of the Cayley tree is 4. The label 0L indicates that no SL state is possible in that region.
The others labels have the same meaning as in figure 1.

Figure 3. The phase diagram of SL states in the(χ, δ) plane for a one-dimensional system
with a bond defect(V = √2) between sites 0 and 1 as well as a nondegenerate linear dimeric
impurity occupying sites 0 and 1. The other features are the same as for figure 1 and figure 2.

regions containing no SL state, one SL state appearing above the host band, one SL state
appearing below the band, two SL states with one below and one above the band and two
SL states appearing above as well as below the band. Since our results forV = 1 and
V = 0.5 agree with known results [25], the validity of our startingansatzis established.
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Figure 4. The phase diagram of SL states in the(χ, δ) plane for a one-dimensional system with
a nondegenerate quadratic nonlinear dimeric impurity in the middle of the system. The(χ, δ)

plane is divided into many regions by the critical lines. The number labelling a region indicates
the number of SL states possible in that region.

2.2. σ=2

We now investigate the case in which the nonlinearity powerσ = 2. Physically,σ = 2 can
be obtained when the masses at the lattice points are treated as Einstein oscillators. From
equation (7) we again note that, forδ = 0, β = ±1 are permissible solutions. On the other
hand, forδ 6= 0, β = ±1 are not permissible solutions. From equations (7) and (8) we
obtain the relevant equation for SL states. The equation is given as

1

χ
= β[(1+ α)− (1− α)β2]

[
V 2[(1+ α)− (1− α)β4]2− β2[(1+ α)− (1− α)β2]2

]
V 3[1− β4][(1+ α)− (1− α)β4]2

(12)

whereα = δ/χ . Using equation (12) we have obtained the full phase diagram of SL states
in the (χ, δ) plane forV = 1 and this is shown in figure 4. There are various regions in
the phase diagram labelled according to the numbers of SL states possible in those regions.
Along theδ = 0 line, we note that, forχ > 0, there are three critical values ofχ , namely,
1, 8/3 and 8. These critical values are in agreement with the values obtained in our earlier
work [23]. In this case, the maximum number of SL states that can appear is five.

With the use of same expression, equation (12), we have also obtained the phase diagram
for SL states in the(χ, δ) plane for a Cayley tree with connectivityK = 4 (V = 0.5). This
is shown in figure 5. The maximum number of SL states possible in this case is found to
be seven. The critical values ofχ along theδ = 0 line are again in agreement with our
earlier result [24].

A typical phase diagram of SL states in the(χ, δ) plane withV = 2 is also shown as
figure 6. The phase diagram has regions containing one to seven SL states. Furthermore, if
we compare the results forδ = 0 with those forδ 6= 0, we note that the maximum number
of SL states possible increases as nondegeneracy is introduced.
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Figure 5. The phase diagram of SL states in the(χ, δ) plane for a Cayley tree with a
nondegenerate quadratic nonlinear dimeric impurity embedded in the middle of the system.
HereK = 4. The number labelling a region indicates the number of SL states possible in that
region. There are two small unlabelled regions near the origin containing two SL states.

Figure 6. The phase diagram of SL states in the(χ, δ) plane for a one-dimensional system
with a bond defect between sites 0 and 1 as well as a nondegenerate quadratic nonlinear dimeric
impurity occupying sites 0 and 1. The bond defect,V , is taken to be 2. The number labelling
a region indicates the number of SL states possible in that region.

In passing, it is worth mentioning that there areN/2 stable SL states in a region if the
region in the phase plane containsN SL states andN is even. On the other hand,(N+1)/2
states are stable ifN is odd. The stability of a SL state is connected to the variation of the
energy of the state as a function ofχ . If the energy of the state increases with the increase
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of χ , the state is stable; otherwise it is unstable. A simpler analysis of the stability of a
state and its connection to the state’s energy will be presented in the next section.

3. A fully nonlinear chain with alternative nonlinear strengths

Here we consider a fully nonlinear one-dimensional system where the alternative sites are
of similar strengths. The Hamiltonian of the system is given by

H = 2

σ + 2

∞∑
n=−∞

χn|Cn|σ+2+
∞∑

n=−∞
[C?nCn+1+ HC] (13)

where

χ2n = χ1 −∞ 6 n 6∞
χ2n+1 = χ2 −∞ 6 n 6∞. (14)

The hopping matrix elements connecting neighbouring sites are taken to be unity. To obtain
the SL states we considerCn = φne−iEt andφn = φ0η

|n|. The expression forη is obtained
by taking |n| → ∞ and is given by

η = 1

2
[|E| −

√
E2− 4]

[21]. Here we have considered a monomericansatzbecause the system is symmetric about
the 0th site. After going through the same procedure as earlier and using the normalization
condition |φ0|2 = (1− η2)/(1+ η2), we obtain the reduced Hamiltonian of the dynamical
system:

Heff = 2

(σ + 2)

[
1− η2

1+ η2

](σ+2)/2 [
χ

1+ ησ+2

1− ησ+2
+ δ1− ησ+2

1+ ησ+2

]
+ 4η

1+ η2
(15)

whereχ andδ are defined asχ = (χ1+χ2)/2 andδ = (χ1−χ2)/2. Setting∂Heff /∂η = 0
we get

1

χ
= (ησ − 1)(ησ+4+ 1)

/([
η2− 1

η

(
1+ η2

1− η2

)σ/2
− δ (η

σ + 1)(ησ+4− 1)

(1+ ησ+2)2

]
(1− ησ+2)2

)
.

(16)

Equation (16) can be used to analyse the number of possible states for different values
of χ , δ andσ . For σ = 0 andδ = 0, from equation (16) we see that, to get a SL state,χ

needs to be infinite. This, therefore, means that no SL states can be obtained. This is true
for σ = 0 andδ = 0 because for these values the system reduces to a perfect linear system.
This is also true forσ = 0 andδ 6= 0. Analysis of SL states can be performed for arbitrary
σ but we consider the case ofσ = 2 for the reason mentioned earlier. Forσ = 2, equation
(16) reduces to

1

χ
= η(1+ η6)(1+ η4)2

(1+ η2)3[(1− η2)(1+ η4)2− δη(1− η2)(1− η6)]
. (17)

Equation (17) tells us directly that forδ = 0 there will always be one SL state and this
is consistent with our earlier result [24]. Using equation (17), the phase diagram of SL
states in the(χ, δ) plane is obtained; this is shown in figure 7. As before, the numbers
labelling the different regions indicate the numbers of SL states in those regions. Here also
the maximum number of SL states increases compared to that for a perfect nonlinear chain.
Furthermore, the phase diagram in this case is quite rich (see figure 7). Stationary localized
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Figure 7. The phase diagram of the SL states in the(χ, δ) plane for a fully nonlinear one-
dimensional system where alternative sites are of different nonlinear strengths. The number
labelling a region indicates the number of SL states possible in that region.

states in linear impure systems are well known to occur [25]. On the other hand, here we
have a translationally invariant system. This then shows that nonlinearity can introduce
self-localization [26] in the system. This is an interesting result.

Figure 8. f (η) is plotted as a function ofη. The points indicated by A, B and C are fixed
points. Hereχ andδ are taken to be 0.35 and 2.5 respectively.

The stability of the SL states in this system can be understood from a simpler graphical
analysis. For this purpose we look at the Hamiltonian given in equation (15). The Hamil-
tonian is function of one dynamical variable, namelyη, whereχ andδ are parameters. Here
we consider an analogous equation,η̇ = ∂Heff /∂η = f (η). The solutions of the equation
f (η) = 0 will give the fixed points for fixed values ofχ and δ and the number of fixed
points withη ∈ [0, 1] will be the number of SL states. We now plotf (η) as a function of
η for χ = 0.35 andδ = 2.5; this is shown in figure 8. Iff (η) > 0, then the flow of the
dynamical variable will be in the positive direction and, on the other hand, iff (η) < 0, then
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Figure 9. The energies of the SL states are plotted as a function ofχ . Hereδ = 2.5. A1, B1

and C1 are the points corresponding to the points A, B and C (in figure 8) respectively. The
dotted line isχ = 0.35.

the flow will be in the negative direction. These flows are indicated by arrows in the figure
and the fixed points are denoted by A, B and C respectively. In the neighbourhood of A the
flow is always towards A and the same is true for C. Therefore, A and C are stable fixed
points. On the other hand, in the neighbourhood of B the flow is away from B. Hence, this
is an unstable fixed point. The same thing happens for all(χ, δ) in the three-state region
in figure 7. We therefore note that among the three SL states (fixed points), two are stable
and the other one is unstable.

To find the connection of the stability of the states to the energy andχ , we plot the
energy of the states as a function ofχ in the neighbourhood ofχ = 0.35 for a fixed value
of δ = 2.5; this is shown in figure 9. The energies of the SL states arising from the fixed
points A, B and C are denoted by A1, B1 and C1 respectively in figure 9. This figure
clearly shows that in the neighbourhood ofχ = 0.35, the energies of the two stable SL
states increase withχ and that of the unstable state decreases. We, therefore, conclude that
the SL state is stable if the energy of the state increases withχ and that otherwise it is
unstable.

We now end this section with a brief discussion of the exactness of the calculation. The
method adopted here is similar to the well known effective-medium theory for the linear
system. This is quite clear from the form ofHeff given in equation (15). A single nonlinear
impurity, χeff , which is a function ofη, χ andδ, can give rise to such a Hamiltonian. Again
it is well known that for one-dimensional systems, impurity states appearing outside the band
are exponentially localized. Low-energy SL states will peak at a lattice point and will fall
exponentially on both sides. So, the use of a monomericansatzis entirely justified (see
also reference [21]). Therefore, the basic features obtained here will also be reproduced by
rigorous calculations. However, quantitative agreement may not be obtained. More work
is therefore necessary.
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4. Summary

We have found the possible numbers of SL states due to the presence of a quadratic
nondegenerate nonlinear dimeric impurity in one-dimensional systems. Phase diagrams
of the SL states in the(χ, δ) plane are presented for all of the systems with nondegenerate
dimeric impurities. The maximum number of SL states possible is found to increase due
to the introduction of nondegeneracy. The dimericansatzhas been used in this case and
this reproduces known results for special cases. A full phase diagram of the self-localized
states for a system comprising a one-dimensional chain with alternative sites having same
nonlinear strength is presented. A monomericansatzhas been introduced in this case and
found to reproduce known results for special cases. Here also, the maximum number of
SL states possible is increased compared to that for a perfect nonlinear system. A stability
analysis for the SL states in the fully nonlinear system and a connection between the
stability and the variation of the energy of the state as a function of the nonlinear parameter
are presented.

Appendix

The structure of a Cayley tree with connectivityK = Z−1= 2 is shown in figure A1.Z is
the coordination number. We select a connection and number its two ends 0 and 1 without
any loss of generality. Furthermore, all points in a given generation lie in a shell. Shells are
labelled with numbersn wheren ∈ (−∞,∞) as shown in figure A1. In a perfect Cayley
tree, the number of points in thenth shell isKn−1 if n > 1 andK |n| if n 6 0. We further
note that for a perfect Cayley tree all points in a given shell have identical neighbourhoods.

Figure A1. This is the Cayley tree with connectivityK = 2. All of the sites in a given shell
are labelled with the same number.

We consider now the motion of a particle on a Cayley tree with connectivityK. In the
tight-binding formalism with nearest-neighbour hopping, the only equations governing the
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motion of the particle are

i
dC̃n
dt
= KC̃n+1+ C̃n−1+ ε̃nC̃n n > 1

i
dC̃n
dt
= KC̃−|n|−1+ C̃−|n|+1+ ε̃nC̃n n < 0

i
dC̃1

dt
= KC̃2+ C̃0+ ε̃1C̃1

i
dC̃0

dt
= KC̃−1+ C̃1+ ε̃0C̃0.

(A1)

Here C̃n denotes the probability amplitude at any point in thenth shell, and all points in
the nth cell have the same probability amplitude because of the identical neighbourhoods.
The nearest-neighbour hopping matrix has been taken to be the identity matrix without any
loss of generality. It is also assumed that all points in a given shell arising due to a specific
organization have the same site energy. We note that in our work with the DNLSE, this
assumption is automatically satisfied. The normalization condition for the site amplitudes
gives

0∑
n=−∞

K |n||C̃n|2+ 1

K

∞∑
n=1

Kn|C̃n|2 = 1. (A2)

We now carry out the following transformations: (i)τ = √Kt ; (ii) εn = ε̃n/
√
K,

(iii) C̃n = K−(n−1)/2Cn for n > 1; and (iv) C̃−|n| = K−|n|/2Cn for n 6 0. After substituting
these transformations in equation (18), we finally obtain

i
dCn
dτ
= Cn+1+ Cn−1+ εnCn for n > 1 andn < 0.

i
dC1

dτ
= C2+ VC0+ ε1C1

i
dC0

dτ
= C−1+ VC1+ ε0C0

(A3)

whereV = 1/
√
K. Furthermore, from equation (19) the normalization condition reduces to∑∞

−∞ |Cn|2 = 1. So, the motion of a particle on a Cayley tree is mapped to that on a one-
dimensional chain. However, in this chain the nearest-neighbour hopping matrix element
connecting the zeroth and first sites is reduced from unity toV = 1/

√
K. Since for the

Cayley treeK > 2, V < 1.
Since we are interested in the DNLSE with a general power-law nonlinear impurity, in

our case

εn = ε̃n/
√
K = χ̃nK−(n−1)σ/2K−1/2|Cn|σ for n > 1

and

ε−|n| = ε̃−|n|/
√
K = χ̃−|n|K−|n|σ/2K−1/2|C−|n||σ for n > 0.

Furthermore,χn = χ̃n/√K. Thus, we see that whenχn = χ0δn,0+ χ1δn,1, −∞ < n <∞,
equation (20) can be generated from the Hamiltonian given by equation (2) withV < 1.
We further note that the Green’s function calculated from equation (20) will yieldG̃0,0(Ẽ =
E/V ) for a perfect Cayley tree with connectivityK whenKV 2 = 1. Consequently, the
general Green’s function can be calculated [24].
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